
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions,
American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to perms@amsci.org.
©Sigma Xi, The Scientific Research Society and other rightsholders

2010 September–October 369www.americanscientist.org

Computing Science

© 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

The Great Principles of Computing

Peter J. Denning

Computing is integral to sci-
ence—not just as a tool for

analyzing data, but as an agent of
thought and discovery.

It has not always been this way. Com-
puting is a relatively young discipline.
It started as an academic field of study
in the 1930s with a cluster of remarkable
papers by Kurt Gödel, Alonzo Church,
Emil Post and Alan Turing. The papers
laid the mathematical foundations that
would answer the question “what is
computation?” and discussed schemes
for its implementation. These men saw
the importance of
automatic computa-
tion and sought its
precise mathemati-
cal foundation. The
various schemes
they each proposed
for implementing
computation were
quickly found to
be equivalent, as a
computation in any
one could be real-
ized in any other.
It is all the more
remarkable that
their models all led
to the same conclu-
sion that certain
functions of practical interest—such as
whether a computational algorithm (a
method of evaluating a function) will
ever come to completion instead of be-
ing stuck in an infinite loop—cannot be
answered computationally.

At the time that these papers were
written, the terms “computation” and
“computers” were already in common
use, but with different connotations from
today. Computation was taken to mean
the mechanical steps followed to evalu-

ate mathematical functions; computers
were people who did computations. In
recognition of the social changes they
were ushering in, the designers of the
first digital computer projects all named
their systems with acronyms ending in
“-AC”, meaning automatic computer—
resulting in names such as ENIAC, UNI-
VAC and EDSAC.

At the start of World War II, the mili-
taries of the United States and the United
Kingdom became interested in applying
computation to the calculation of ballistic
and navigation tables and to the crack-
ing of ciphers. They commissioned proj-
ects to design and build electronic digital
computers. Only one of the projects was

completed before the war was over. That
was the top-secret project at Bletchley
Park in England, which cracked the Ger-
man Enigma cipher using methods de-
signed by Alan Turing.

Many people involved in those proj-
ects went on to start computer compa-
nies in the early 1950s. Universities be-
gan offering programs of study in the
new field in the late 1950s. The field and
the industry have grown steadily into a
modern behemoth whose Internet data
centers are said to consume almost three
percent of the world’s electricity.

During its youth,
computing was
an enigma to the
established fields
of science and en-
gineering. At first,
computing looked
like only the ap-
plied technology
of math, electrical
engineering or sci-
ence, depending on
the observer. How-
ever, over the years,
computing pro-
vided a seemingly
unending stream of
new insights, and it
defied many early

predictions by resisting absorption back
into the fields of its roots. By 1980 com-
puting had mastered algorithms, data
structures, numerical methods, program-
ming languages, operating systems, net-
works, databases, graphics, artificial in-
telligence and software engineering. Its
great technological achievements—the
chip, the personal computer and the In-
ternet—brought it into many lives. These
advances stimulated more new subfields,
including network science, Web science,
mobile computing, enterprise comput-
ing, cooperative work, cyberspace pro-
tection, user-interface design and in-
formation visualization. The resulting
commercial applications have spawned

Peter J. Denning is Director of the Cebrowski Insti-
tute for Innovation and Information Superiority at the
Naval Postgraduate School in Monterey, California,
and is a past president of ACM. Email: pjd@nps.edu

Computing may
be the fourth great
domain of science

along with the
physical, life and

social sciences

370 American Scientist, Volume 98 © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

new research challenges in social net-
works, endlessly evolving computation,
music, video, digital photography, vision,
massive multiplayer online games, user-
generated content and much more.

The name of the field has changed
several times to keep up with the flux.
In the 1940s it was called automatic com-
putation and in the 1950s, information
processing. In the 1960s, as it moved into
academia, it acquired the name com-
puter science in the U.S. and informat-
ics in Europe. By the 1980s computing
comprised a complex of related fields,
including computer science, informat-
ics, computational science, computer
engineering, software engineering,
information systems and information
technology. By 1990 the term computing
had become the standard for referring
to this core group of disciplines.

Computing’s Paradigm
Traditional scientists frequently ques-
tioned the name computer science. They
could easily see an engineering paradigm
(design and implementation of systems)

and a mathematics paradigm (proofs of
theorems) but they could not see much
of a science paradigm (experimental ver-
ification of hypotheses). Moreover, they
understood science as a way of dealing
with the natural world, and computers
looked suspiciously artificial.

The founders of the field came from all
three paradigms. Some thought comput-
ing was a branch of applied mathematics,
some a branch of electrical engineering,
and some a branch of computational-
oriented science. During its first four
decades, the field focused primarily on
engineering: The challenges of build-
ing reliable computers, networks and
complex software were daunting and
occupied almost everyone’s attention.
By the 1980s these challenges largely had
been met and computing was spreading
rapidly into all fields, with the help of
networks, supercomputers and personal
computers. During the 1980s computers
became powerful enough that science
visionaries could see how to use them to
tackle the hardest questions—the “grand
challenge” problems in science and en-

gineering. The resulting “computational
science” movement involved scientists
from all countries and culminated in the
U.S. Congress’s adoption of the High-
Performance Computing and Commu-
nications (HPCC) Act of 1991 to support
research on a host of large problems.

Today, there is an agreement that com-
puting exemplifies science and engineer-
ing, and that neither science nor engineer-
ing characterizes computing. Then what
does? What is computing’s paradigm?

The leaders of the field struggled with
this paradigm question from the begin-
ning. Along the way, there were three
waves of attempts to unify views. Allen
Newell, Alan Perlis and Herb Simon led
the first one in 1967. They argued that
computing was unique among all the
sciences in its study of information pro-
cesses. Simon, a Nobel laureate in eco-
nomics, went so far as to call computing
a science of the artificial. A catchphrase of
this wave was “computing is the study of
phenomena surrounding computers.”

The second wave focused on pro-
gramming, the art of designing algo-
rithms that produce information pro-
cesses. In the early 1970s, computing
pioneers Edsger Dijkstra and Donald
Knuth took strong stands favoring algo-
rithm analysis as the unifying theme. A
catchphrase of this wave was “computer
science equals programming.” In recent
times, this view has foundered because
the field has expanded well beyond pro-
gramming, whereas the public under-
standing of a programmer has narrowed
to just those who write code.

The third wave came as a result of
the Computer Science and Engineering
Research Study (COSERS), led by Bruce
Arden in the late 1970s. Its catchphrase
was “computing is the automation of in-
formation processes.” Although its final
report successfully exposed the science
in computing and explained many eso-
teric aspects to the layperson, its central
view did not catch on.

An important aspect of all three defini-
tions was the positioning of the computer
as the object of attention. The computa-
tional-science movement of the 1980s be-
gan to step away from that notion, adopt-
ing the view that computing is not only a
tool for science, but also a new method
of thought and discovery in science. The
process of dissociating from the comput-
er as the focal point came to completion
in the late 1990s when leaders in the field
of biology—epitomized by Nobel laure-
ate David Baltimore and echoing cogni-
tive scientist Douglas Hofstadter—said

Category Focus Examples

Computation

Communication

Coordination

Recollection

Automation

Evaluation

Design

What can and cannot
be computed

Reliably moving
information between
locations

Effectively using many
autonomous computers

Representing, storing,
and retrieving
information from media

Discovering algorithms
for information
processes

Predicting performance
of complex systems

Structuring software
systems for reliability
and dependability

Classifying complexity of problems in
terms of the number of computational
steps to achieve a solution

Information measured as entropy.
Compression of files, error-correcting
codes, cryptography

Protocols that eliminate conditions that
cause indeterminate results

All storage systems are hierarchical,
but no storage system can offer equal
access time to all objects. All
computations favor subsets of their
data objects in any time interval

Most heuristic algorithms can be
formulated as searches over enormous
data spaces. Many human cognitive
processes can be modeled as
information processes

Most computational systems can be
modeled as networks of servers whose
fast solutions yield close approximations
of real throughput and response time

Complex systems can be decomposed
into interacting modules and virtual
machines. Modules can be stratified
corresponding to their time scales of
events that manipulate objects

The Great Principles of Computing framework is designed to give a scientific definition of the field.
The principles fall into seven categories, each of which is defined and given examples above.

2010 September–October 371www.americanscientist.org © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

that biology had become an information
science and DNA translation is a natural
information process. Many computer sci-
entists have joined biologists in research
to understand the nature of DNA infor-
mation processes and to discover what
algorithms might govern them.

Take a moment to savor this distinc-
tion that biology makes. First, some infor-
mation processes are natural. Second, we
do not know whether all natural infor-
mation processes are produced by algo-
rithms. The second statement challenges
the traditional view that algorithms (and
programming) are at the heart of com-
puting. Information processes may be
more fundamental than algorithms.

Scientists in other fields have come to
similar conclusions. They include physi-
cists working with quantum computa-
tion and quantum cryptography, chem-
ists working with materials, economists
working with economic systems, and
social scientists working with networks.
They have all said that they have discov-
ered information processes in their disci-
plines’ deep structures. Stephen Wolfram,
a physicist and creator of the software
program Mathematica, went further, argu-
ing that information processes underlie
every natural process in the universe.

All this leads us to the modern
catchphrase: “Computing is the study
of information processes, natural and
artificial.” The computer is a tool in
these studies but is not the object of
study. As Dijkstra once said, “Comput-
ing is no more about computers than
astronomy is about telescopes.”

The term computational thinking has
become popular to refer to the mode of
thought that accompanies design and
discovery done with computation. This
term was originally called algorithmic
thinking in the 1960s by Newell, Perlis
and Simon, and was widely used in the
1980s as part of the rationale for com-
putational science. To think computa-
tionally is to interpret a problem as an
information process and then seek to
discover an algorithmic solution. It is a
very powerful paradigm that has led to
several Nobel Prizes.

Great Principles of Computing
The maturing of our interpretation of
computing has given us a new view of
the content of the field. Until the 1990s,
most computing scientists would have
said that it is about algorithms, data
structures, numerical methods, pro-
gramming languages, operating sys-

tems, networks, databases, graphics,
artificial intelligence and software engi-
neering. This definition is a technologi-
cal interpretation of the field. A scientific
interpretation would emphasize the fun-
damental principles that empower and
constrain the technologies.

My colleagues and I have developed
the Great Principles of Computing frame-
work to accomplish this goal. These prin-
ciples fall into seven categories: compu-
tation, communication, coordination,
recollection, automation, evaluation and
design (see the first table for examples).

Each category is a perspective on com-
puting, a window into the knowledge
space of computing. The categories are
not mutually exclusive. For example, the
Internet can be seen as a communication
system, a coordination system or a stor-
age system. We have found that most
computing technologies use principles
from all seven categories. Each category
has its own weight in the mixture, but
they are all there.

In addition to the principles, which are
relatively static, we need to take account
of the dynamics of interactions between
computing and other fields. Scientific
phenomena can affect one another in
two ways: implementation and influ-
ence. A combination of existing things
implements a phenomenon by generat-
ing its behaviors. Thus, digital hardware
physically implements computation; ar-
tificial intelligence implements aspects of
human thought; a compiler implements
a high-level language with machine
code; hydrogen and oxygen implement
water; complex combinations of amino
acids implement life.

Influence occurs when two phenom-
ena interact with each other. Atoms arise
from the interactions among the forces
generated by protons, neutrons and elec-
trons. Galaxies interact via gravitational
waves. Humans interact with speech,
touch and computers. And interactions
exist across domains as well as within
domains. For example, computation in-
fluences physical action (electronic con-
trols), life processes (DNA translation)
and social processes (games with out-
puts). The second table illustrates inter-
actions between computing and each of
the physical, life and social sciences, as
well as within computing itself. There
can be no question about the pervasive-
ness of computing in all fields of science.

What Are Information Processes?
There is a potential difficulty with defin-
ing computation in terms of information.

Physical Social Life

Computing
implemented
by:

Computing
implements:

Computing
influenced
by:

Computing
imfluences:

Bidirectional
influence

mechanical,
optical,
electronic,
quantum and
chemical
computing

modeling,
simulation,
databases, data
systems, quantum
cryptography

sensors,
scanners,
computer vision,
optical character
recognition,
localization

locomotion,
fabrication,
manipulation,
open-loop control

robots, closed-
loop control

Computing

mechanical
robots,
human cognition,
games with inputs
and outputs

artificial
intelligence,
cognitive modeling,
autonomic
systems

learning,
programming,
user modeling,
authorization,
speech
understanding

screens, printers,
graphics, speech
generation,
network science

human-computer
interaction, games

genomic,
neural,
immunological,
DNA translation,
evolutionary
computing

artificial life,
biomimetics,
systems biology

eye, gesture,
expression, and
movement
tracking;
biosensors

bioeffectors,
haptics, sensory
immersion

brain-computer
interfaces

compilers,
operating
systems,
emulation,
abstractions,
procedures,
architectures,
languages

networking,
security,
parallel
computing,
distributed
systems,
grids

Computing interacts in many ways with the other domains of science. Computing implements
a phenomenon by generating its behaviors. Examples of how computing is both implemented
by, and implements, the domains of physics, social and life sciences, and well as influencing
its own behaviors, are given above.

372 American Scientist, Volume 98 © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

Information seems to have no settled
definition. Claude Shannon, the father of
information theory, in 1948 defined infor-
mation as the expected number of yes-
or-no questions one must ask to decide
what message was sent by a source. He
purposely skirted the issue of the mean-
ing of bit patterns, which seems to be im-
portant to defining information. In sift-
ing through many published definitions,
Paolo Rocchi in 2010 concluded that
definitions of information necessarily
involve an objective component—signs
and their referents, or in other words,
symbols and what they stand for—and a
subjective component—meanings. How
can we base a scientific definition of in-
formation on something with such an
essential subjective component?

Biologists have a similar problem
with “life.” Life scientist Robert Hazen
notes that biologists have no precise
definition of life, but they do have a
list of seven criteria for when an entity
is living. The observable affects of life,
such as chemistry, energy and repro-
duction, are sufficient to ground the
science of biology. In the same way, we
can ground a science of information on
the observable affects (signs and refer-
ents) without having a precise defini-
tion of meaning.

A representation is a pattern of sym-
bols that stands for something. The
association between a representation
and what it stands for can be recorded
as a link in a table or database, or as a
memory in people’s brains. There are
two important aspects of representa-
tions: syntax and stuff. Syntax is the
rules for constructing patterns; it al-
lows us to distinguish patterns that
stand for something from patterns that
do not. Stuff is the measurable physi-
cal states of the world that hold repre-
sentations, usually in media or signals.
Put these two together and we can
build machines that can detect when a
valid pattern is present.

A representation that stands for a
method of evaluating a function is
called an algorithm. A representation
that stands for values is called data.
When implemented by a machine, an
algorithm controls the transforma-
tion of an input data representation
to an output data representation. The
algorithm representation controls the
transformation of data representations.
The distinction between the algorithm
and the data representations is pretty
weak; the executable code generated
by a compiler looks like data to the

compiler and like an algorithm to the
person running the code.

Even this simple notion of representa-
tion has deep consequences. For exam-
ple, as Gregory Chaitin has shown, there
is no algorithm for finding the shortest
possible representation of something.

Some scientists leave open the ques-
tion of whether an observed informa-
tion process is actually controlled by an
algorithm. DNA translation can thus be
called an information process; if some-
one discovers a controlling algorithm, it
could be also called a computation.

Some mathematicians define com-
putation as separate from implemen-
tation. They treat computations as
logical orderings of strings in abstract
languages, and are able to determine
the logical limits of computation. How-
ever, to answer questions about the
running time of observable computa-
tions, they have to introduce costs—the
time or energy of storing, retrieving or
converting representations. Many real-
world problems require exponential-
time computations as a consequence of
these implementable representations.
My colleagues and I still prefer to deal
with implementable representations be-
cause they are the basis of a scientific
approach to computation.

These notions of representations are
sufficient to give us the definitions we
need for computing. An information
process is a sequence of representations.
(In the physical world, it is a continu-
ously evolving, changing representa-
tion.) A computation is an information
process in which the transitions from
one element of the sequence to the next
are controlled by a representation. (In
the physical world, we would say that
each infinitesimal time and space step is
controlled by a representation.)

Where Computing Stands
Computing as a field has come to ex-
emplify good science as well as engi-
neering. The science is essential to the
advancement of the field because many
systems are so complex that experimen-
tal methods are the only way to make
discoveries and understand limits.
Computing is now seen as a broad field
that studies information processes, nat-
ural and artificial.

This definition is wide enough to
accommodate three issues that have
nagged computing scientists for many
years: Continuous information process-
es (such as signals in communication
systems or analog computers), interac-

tive processes (such as ongoing Web
services) and natural processes (such as
DNA translation) all seemed like com-
putation but did not fit the traditional
algorithmic definitions.

The great-principles framework re-
veals a rich set of rules on which all
computation is based. These principles
interact with the domains of the physi-
cal, life and social sciences, as well as
with computing technology itself.

Computing is not a subset of other
sciences. None of those domains are
fundamentally concerned with the
nature of information processes and
their transformations. Yet this knowl-
edge is now essential in all the other
domains of science. Computer scientist
Paul Rosenbloom of the University of
Southern California in 2009 argued that
computing is a new great domain of
science. He is on to something.

Bibliography
Arden, B. W., ed. 1983. What Can Be Automated:

Computer Science and Engineering Research
Study (COSERS). Cambridge, MA: The MIT
Press.

Bacon, D., and W. van Dam. 2010. Recent prog-
ress in quantum algorithms. Communications
of the ACM 53:84–93.

Baltimore, D. 2001. How Biology Became an In-
formation Science. In The Invisible Future, P.
Denning, ed. New York, NY: McGraw-Hill.

Chaitin, G. 2006. Meta Math! The Quest for Omega.
New York, NY: Vintage Press.

Denning, P. 2003. Great Principles of Computing.
Communications of the ACM 46:15–20.

Denning, P., and C. Martell. Great Principles of
Computing Website. http://greatprinciples.
org

Denning, P. 2007. Computing is a natural science.
Communications of the ACM 50:15–18.

Denning, P., and P. Freeman. 2009. Computing’s
paradigm. Communications of the ACM 52:
28–30.

Hazen, R. 2007. Genesis: The Scientific Quest for
Life’s Origins. Washington, D.C.: Joseph Henry
Press.

Hofstadter, D. 1985. Metamagical Themas: Quest-
ing for the Essence of Mind and Pattern. New
York, NY: Basic Books.

 Newell, A., A. J. Perlis and H. A. Simon. 1967.
Computer science. Science 157:1373–1374.

Rocchi, P. 2010. Logic of Analog and Digital Ma-
chines. Hauppauge, NY: Nova Publishers.

Rosenbloom, P. S. 2004. A new framework for
computer science and engineering. IEEE Com-
puter 31–36.

Shannon, C., and W. Weaver. 1949. The Math-
ematical Theory of Communication. Champaign,
IL: University of Illinois Press. Available at
http://cm.bell-labs.com/cm/ms/what/
shannonday/paper.html

Simon, H. 1969. The Sciences of the Artificial. Cam-
bridge, MA: The MIT Press.

Wolfram, S. 2002. A New Kind of Science. Cham-
paign, IL: Wolfram Media.

